

Genetics of Congenital Heart Diseases by WINCARS Association

Dr Prajnya Ranganath (MD Pediatrics, DM Medical Genetics) Associate Professor & Head & Dr Dhanya Lakshmi N MD(Pediatrics),DCH,DNB,DM (Medical Genetics) Assistant Professor

Dept of Medical Genetics Nizam's Institute of Medical Sciences, Hyderabad

- Introduction
- Embryology in brief
- General genetics approach to CHD
- Chromosomal disorders
- Microdeletion/ duplication disorders
- Single gene disorders
- Pathway disorders

Introduction

- CHD: 1/3rd of all major congenital abnormalities
- Affects 2 to 3 children per 100 live births
- Polygenic: Environmental and genetic
- Knowledge about genetics is essential in reproductive counseling of patients with CHD

(JACC VOL. 69, NO. 7, 2017 FEBRUARY 21, 2017:859-70)

Non genetic causes

- Critical period of cardiac development: 2-7 weeks
- Infectious agents: Rubella
- Maternal diabetes
- Maternal exposure to alcohol, isotretinoin, thalidomide, AED
- Environmental teratogens (dioxins, pesticides)

TABLE 46-3	Some Common Teratogens			
Teratogenic Influence	Risk of Heart Defect (%)	Most Common Type		
Maternal rubella	35	PDA, peripheral pulmonary artery stenosis, septal defects		
Maternal diabetes	3–5	VSD, coarctation, TGA		
Maternal phenylketonuri	25–50 a	Tetralogy of Fallot		
Systemic lupus erythematosus	20–40	Complete heart block		
Maternal alcohol abuse	25–30	Septal defects		
Hydantoin	2–3	Pulmonary and aortic stenosis, coarctation of aorta, PDA		
Trimethadione	15–30	Tetralogy of Fallot, TGA, hypoplastic left heart		
Thalidomide	<5	Tetralogy of Fallot, septal defects, truncus arteriosus		
Lithium		Ebstein anomaly, tricuspid atresia, ASD		
Retinoic acid	10-20	Conotruncal heart defects		
Cocaine	5	Excess situs disturbance		

Emery and Rimoin's,5th edition

Factors influencing development of heart

Factor	Examples	Diseases associated
Transcriptional regulators	TBX5, NKX2-5 GATA4 TBX1 SALL4	Holt Oram Inherited ASD,VSD 22q deletion syndrome, Duane radial ray defects
Signalling pathway	Wnt RAS MAPK NOTCH,TGF beta Bmp, FGF	Rasopathies Robinow syndrome
Micro RNA	miR-II and miR-I-2	Conduction defect, VSD
Epigenetic regulators	Smyd I	Regulates cardiac chamber growth and differentiation
Hemodynamic factors	Primary outflow tract disorders can cause secondary structural defect	

Isolated CHD

- Genetically heterogeneous
- More than 50 genes are implicated
- Bulk falls in some genes involved in development(NKX2-5, GATA4, NOTCH1)

Circ Res. 2013 February 15; 112(4)

Current Genomics, 2014, 15, 390-399

Gene	Protein	Phenotypes [*]		
Transcription Factors and Co-factors				
ANKRD1	Ankyrin Repeat Domain	TAPVR	609599	
CITED2	c-AMP Responsive Element- Binding Protein	ASD; VSD		
FOG2/ZFPM2	Friend of GATA	TOF, DORV	603693	
GATA4	GATA4 Transcription Factor	ASD, PS, VSD, TOF, AVSD, PAPVR		
GATA6	GATA6 Transcription Factor	ASD, TOF, PS, AVSD, PDA, OFT defects, VSD		
HAND2	Helix-Loop-Helix Transcription Factor	TOF	602407	
IRX4	Iroquois Homeobox 4	VSD	606199	
MED13L	Mediator Complex Subunit 13- like	TGA		
NKX2-5/NKX2.5	Homeobox Containing Transcription Factor	ASD, VSD, TOF, HLH, CoA, TGA, DORV, IAA, OFT defects		
NKX2-6	Homeobox Containing Transcription Factor	PTA		
TBX1	T-Box 1 Transcription Factor	TOF, (22q11 deletion syndromes)		
TBX5	T-Box 5 Transcription Factor	AVSD, ASD, VSD, (Holt Oram syndrome)	601620	
TBX20	T-Box 20 Transcription Factor	ASD, MS, VSD	606061	
TFAP2B	Transcription Factor AP-2 Beta	PDA, (Char syndrome)	601601	
ZIC3	Zinc Finger Transcription Factor	TGA, PS, DORV, TAPVR, ASD, HLH, VSD, Dextrocardia, L-R axis defects	300265	

Circ Res. 2013 February 15; 112(4)

Receptors, Ligar	nds, and Signaling		
ACVR1/ALK2	BMP Receptor AVSD		
ACVR2B	Activin Receptor	PS, DORV, TGA, Dextrocardia,	602730
ALDH1A2	Retinaldehyde Dehydrogenase	TOF	603687
CFC1/CRYPTIC	Cryptic Protein	TOF; TGA; AVSD; ASD; VSD; IAA; DORV	605194
CRELDI	Epidermal Growth Factor- Related Proteins	ASD; AVSD	607170
FOXH1	Forkhead Activin Signal Transducer	TOF, TGA	603621
GDF1	Growth Differentiation Factor-1	Heterotaxy, TOF, TGA, DORV	602880
GJA1	Connexin 43	ASD, HLH, TAPVR, (Oculodentodigital dysplasia)	121014
JAG1	Jagged-1 Ligand	PAS, TOF, (Alagille syndrome)	601920
LEFTY2	Left-Right Determination Factor	TGA, AVSD, IAA, CoA, L-R axis defects, IVC defects	
NODAL	Nodal homolog (TGF-beta superfamily)	TGA, PA, TOF, DORV, Dextrocardia, IVC defect, TAPVR, AVSD	601265
NOTCH1	NOTCH1 (Ligand of JAG1)	BAV, AS, CoA, HLH	190198
PDGFRA	Platelet-Derived Growth Factor Receptor Alpha	TAPVR	173490
SMAD6	MAD-related protein	BAV, CoA, AS	602931
TAB2	TGF-beta Activated Kinase	OFT defects	605101
TDGF1	Teratocarcinoma-Derived Growth Factor 1	TOF, VSD	187395
VEGF	Vascular Endothelial Growth Factor	CoA, OFT defects	192240
Structural Prote	ins		
ACTC	Alpha Cardiac Actin	ASD	102540
ELN	Elastin	SVAS, PAS, PS, AS, (Williams-Beuren syndrome)	130160
MYH11	Myosin Heavy Chain 11	PDA, Aortic Aneurysm	160745
MYH6	Alpha Myosin Heavy Chain	ASD, TA, AS, PFO, TGA	160710
MYH7	Beta Myosin Heavy Chain	Ebstein Anomaly, ASD, NVM	160760

Circ Res. 2013 February 15; 112(4)

Recurrence risk

Table 2 Recurrence risks for non-syndromic congenital heart disease in first-degree relatives

Type of non- syndromic CHD	Recurrence risk of same CHD in first-degree relatives (%)	Recurrence risk of discordant CHD in first- degree relatives (%)	Recurrence risk of any CHD in first-degree relatives (%)
ASVD	1.10	2.2	3.30
ASD	0.88	2.4	3.28
VSD	0.67	1.9	2.57
ASD and VSD	0.24	2.2	2.44
Conotruncal defect ¹	1.30	2.4	3.70
Right ventricular	1.70	3.0	4.70
outflow tract obstruction ² Left sided obstructions ³	0.79	2.4	3.19

- RR for siblings 1-6%
- If two siblings affected: 10%
- RR higher for offspring
- Higher if proband is mother
- Higher for left sided lesions(8-10%)

World J Cardiol 2016 February 26; 8(2): 180-191

When to consider genetic testing

- Facial dysmorphism
- Limb defects
- Growth delay
- Mental subnormality
- Abnormalities pertaining to other systems
- Family history of other affected members

Types of genetic testing

Cytogenetics Molecular Cytogenetics

Molecular genetics

Biochemical genetics

Cytogenetic testing

Karyotyping

46, XY. Normal male karyotype

When to do karyotyping?

Clinical suspicion of a chromosomal disorder

Down syndrome: Trisomy 21

When to do karyotyping?

Clinical suspicion of a chromosomal disorder

and the second s	Theorem .		5	hand	3000	25
86	a c	58	28	of the second	20	38
8,8	ខ្លន់	ê, S	2	3	3,3	\$ <u>6</u>
ą'e	3,8	4 Å	4	£	x K	

Turner syndrome: 45,X

When to do karyotyping?

Any case of multiple malformation syndrome with/ without idiopathic intellectual disability/ global developmental delay: 3-5% yield

Molecular cytogenetic testing

- Karyotyping not useful for sub- microscopic chromosomal abnormalities: microdeletion/ microduplication
- Phenotype suggestive of a specific microdeletion syndrome

Molecular cytogenetic testing

22q microdeletion

Deleted region too small to be detected in karyotype

Requires molecular cytogenetic tests:

- Fluorescent in-situ hybridization(FISH)
- Multiplex ligation-dependent probe amplification (MLPA)
- Cytogenetic microarray (CMA)

Patient's MLPA result

Diagnosis: 22q microdeletion syndrome

Molecular genetic testing

Single gene disorders with CHD

Johanson Blizzard syndrome: *UBR1* gene mutation analysis

Molecular genetic studies

- Single gene disorders: Karyotyping / FISH/ MLPA not useful
- DNA-based gene sequence analysis when a specific monogenic disorder is suspected

Polymerase chain reaction

Molecular genetic tests

G

ARMS - PCR

Multiplex - PCR

MLPA

# Length: 779	201/220 /00 011	
# Identity:	701/779 (90.0%)	
<pre># Similarity:</pre>	701/779 (90.0%)	
# Gaps:	64/779 (8.28)	
# Score: 3368.5		
•		

WEARS ANT		20
2MD033_001	1	50
MBOSS 001	1 TCCTABGCCAGTGCCAGBAGAGCCABGGACAGGTACGGCTGTCATC	46
	1 1001000000000000000000000000000000000	10
EMBOSS 001	31TCGGCC-ATCTACTC	44
	1.111 111111	
EMBOSS 001	47 ACTTAGACCTCACCCTGTGGAGCCACACCCTAGGGTTGGCCAATCTACTC	96
EMBOSS 001	45 CCAGGAGCAGGGAGGGCAGGAGCCAGGGCTGGGCATAAAAGTCAGGGCAG	94
<u> </u>		
EMBOSS 001	97 CCAGGAGCAGGGAGGGCAGGAGCCAGGGCTGGGCATAAAAGTCAGGGCAG	146
EMBOSS_001	95 AGCCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA	144
20		
EMBOSS_001	147 AGCCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA	196
EMBOSS_001	145 CCTCAAACAGACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGT	194
	111111111111111111111111111111111111111	
EMBOSS_001	197 CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGT	246
100		
EMBOSS_001	195 TACTGCCCTGTGGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCC	244
EMBOSS_001	247 TACTGCCCTGTGGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGATGAGGCCC	296
ND000 001	0.15 TOODOS COTTO OTSTOLS COTTS OS 03 03 00 007775 \$ 0.03 03 003 173 03	204
CMBOSS_001	245 1000CR00110CIAICAR001IACAR0RCR001IIAA00A0ACCARIA0A	294
WOARD ANS		245
TUP033_001		240
MBOSS 001	295 ABCTGG BTGTGGBGBCBGBGBGBGBCTCTTGGGTTTCTGBTBGGCBCTG	344
arabodd_001		
EMBOSS 001	347 AACTGGGCATGTGGAGACAGAGAGAGACTCTTGGGTTTCTGATAGGCACTG	396
EMBOSS 001	345 ACTCICTCTGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCTGGTGGTC	394
5		
EMBOSS 001	397 ACTCTCTCTGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCTGGTGGTC	446
EMBOSS_001	395 TACCCTIGGACCCAGAGGTICITIGAGICCTTIGGGGATCIGICCACICC	444
EMBOSS_001	447 TACCCTIGGACCCAGAGGTICTITGAGICCTTIGGGGATCIGICCACICC	496
EMBOSS_001	445 TGATGCIGTTATGGGCAACCCTAAGGIGAAGGCTCATGGCAAGAAAGIGC	494
LMBOSS_001	49/ IGAIGUIGIIAIGGGCAACUUIAAGGIGAAGGCICAIGGCAAGAAAGIGC	546
NROSS 001	445 TOOTTOTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	544
210033_001	175 LUGSIGULITIAGIDALGGULIGGULIGGULAGUGAURAULIURAGGGURUU	244

Metabolic genetic testing

Inborn Errors of Metabolism

Salient features:

- Motor developmental delay
- Floppiness & arreflexia
- Hepatomegaly
- Growth retardation
- Cardiomegaly
- Hypertrophic cardiomyopathy
- Similarly affected sibling

Pompe Disease

Case Scenario

- Alpha glucosidase enzyme assay (acarbose inhibition): 3 nmol/ hr/ mg (ref: 60-120 nmol/ hr/ mg)
- GAA gene mutation analysis: c.1465 G>A/ c.1799 G>A

ствссттсссс	RACTTCACCAACCCC	TGTGATCTCCCR	СТСБАССТТТБС	TGG
		1795	1805	•••• 18:
<mark>ctgcc</mark> ttcccc T A F P	g <mark>acttcaccaacccc</mark> DFTNP	<mark>;tgtgatctccc</mark> g FVIS	<mark>ctcgacctttgc</mark> R S T F	tgg A
CTGCCTTCCCC CTGCCTTCCCC	R ACTTCACCAACCCC	TGTGATCTCCC		TGG TGG
MMMM	MMMM	MMMM	MMM	$\overline{\mathbb{N}}$

Molecular genetic studies

What if the features do not fit into a clinically identifiable syndrome?

Molecular genetic studies

- Scans entire genome for microdeletions/ microduplications
- For multiple malformation conditions without an identifiable syndromic association/ etiology

Chromosomal	microarray

	Aberration Details					
Chr	Aberration Length	CNV Conf	Variation Type	Gene	DGV/CHOP similarity	Statistical Significance
8	135252	119.3264	Hemizygous Deletion	Present	Low	Significant
9	170967	104.9423	Hemizygous Deletion	Absent	No Data	No Significance
16	368061	59.30399	Hemizygous Deletion	Absent	No Data	No Significance
Y	730130	137.6444	Duplication	Present	No Data	No Significance
Y	200284	172.5503	Triplication	Absent	No Data	No Significance
Y	2674135	195.6163	Duplication	Absent	No Data	No Significance
1	11487135	674.5375	Copy Neutral LOH	Present	No Data	No Significance
1	22980276	1067.465	Copy Neutral LOH	Present	Moderate	
2	7266816	374.5963	Copy Neutral LOH	Present	Moderate	
4	13735431	532.6191	Copy Neutral LOH	Present	Moderate	
4	32041545	993.1531	Copy Neutral LOH	Present	Moderate	
9	11223873	469.8707	Copy Neutral LOH	Present	Moderate	
9	11600526	369.8175	Copy Neutral LOH	Present	Moderate	To be evaluated
9	9241584	499.7567	Copy Neutral LOH	Present	Moderate	at Gene Level
10	5586723	264.8291	Copy Neutral LOH	Present	Moderate	
11	4288644	108.2642	Copy Neutral LOH	Present	Moderate	
16	11198854	480.2805	Copy Neutral LOH	Present	Moderate	
19	8337912	262.0085	Copy Neutral LOH	Present	Moderate	
22	11981097	547.3286	Copy Neutral LOH	Present	Moderate	

Molecular genetic studies

Exome sequencing:

- Scans all coding portions of all genes (exome) for sequence variants
- For multiple malformation conditions without an identifiable syndromic association/ etiology
- For multiple malformation conditions with overlapping phenotypes/ genetically heterogeneous

Whole exome/genome sequencing

 Next generation sequencing: massively parallel sequencing strategy that can be used to sequence entire genome/ entire coding portion of genome

• Being used as a final resort testing for all undiagnosed conditions with suspected etiology

If the features do not fit into a clinically identifiable syndrome?

Chromosomal microarray → if inconclusive →Exome sequencing

Chromosomal disorders

Syndrome	% CHD	CHD type
Chromosome aneuploidy		
Trisomy 21	44	AVSD (complete, partial), VSD, ASD, TOF
Trisomy 18	83	VSD, ASD, TOF, DORV, AVSD, CoA
Trisomy 13	51–64	Conotruncal CHD: TOF, DORV; VSD, ASD, AVSD; valvular anomalies
45X (Turner syndrome)	38	Left-sided cardiac structures: bicuspid aortic valve AS, CoA, mitral valve anomalies, HLHS, aortic dilation, dissection
Chromosome deletion		
22q11.2 deletion syndrome (DiGeorge syndrome, velocardiofacial syndrome)	75–80	"Conotruncal anomalies": interrupted aortic arch type B, truncus arteriosus, TOF, TGA, perimembranous VSD, isolated aortic arch anomalies
7p11.23 microdeletion	82	Supravalvular aortic and pulmonary stenosis,
(Williams-Beuren syndrome)		peripheral pulmonary stenosis
1p36 deletion syndrome	35	VSD, ASD, TOF, CoA, PDA
11q23 deletion syndrome (Jacobson syndrome)	56	VSD, left heart anomalies

Biochem Genet (2017) 55:105–123

Frequency of CHD in various chromosomal disorders

	Disease	Frequency of CHD
	Trisomy 13	50%
\sum	Trisomy 18	95%
	Trisomy 21	40%
200	Turner	25%
\swarrow	Ip36 deletion	35%
	3p25 deletion	25%
/	3q duplication	75%
	4p16 deletion	30-50%
	William syndrome(7p13 deletion)	75%
	Smith Magenis syndrome(17p11.2 deletion)	10%
	22 q deletion	75-85%

Moss and Adams, 7th edition

Down syndrome

- 44% have CHD(Freeman et al)
- AVSD: most common
- Flat facial profile
- Thyroid abnormalities
- Developmental delay
- 95%: Non disjunction
- 4%: Translocation
- 1%: Mosaicism

CHD in Down syndrome

- AVCD: 45%
- Isolated VSD: 35%
- ASD: 8%
- PDA 7%
- TOF: 5%
- In older patients: MVP, MR, AR
- Pulmonary hypertension is common

Trisomy 13

- Post axial polydactyly of hands and feet
- Microcephaly
- Anophthalmia/microophthalmia
- Scalp defects:50%
- Renal abnormality
- Heart defect: 50% ; VSD, PDA
- Holoprosencephaly: 66%

Trisomy 18

- Hypertonia
- Large septal defects, PDA, TOF
- Median survival is 1-2 weeks
- 90% die by 6 months of age

- Most common: Bicuspid aortic valve, followed by coarctation of aorta
- Others: PAPVR, ASD, VSD
- 10% have clinically detected heart disease
- 10% have ECHO abnormalities

Emery and Rimoin's, 5th edition

- More than 30% are hypertensive
- Aortic dissection at around 35 years of age
- Increased risk of CV event
- Need regular follow up from Cardiologist

22 q deletion syndrome

- Learning impairment
- Palate abnormalities
- Thymic hypoplasia
- Hypocalcemia

Cardiac abnormalities

Cardiac Finding	% of Affected Individuals		
Tetralogy of Fallot (TOF)	20%		
Interrupted aortic arch (IAA)	13%		
Ventricular septal defect (VSD)	14%		
Truncus arteriosus (TA)	6%		
Vascular ring	5.5%		
Atrial septal defect	3.5%		
VSD; ASD	4%		
Other ¹	10%		
Normal	24%		
McDonald-McGinn et al [2010b]			

William syndrome

- Heterozygous deletion at 7q11.3
- Mild intellectual disability in 75%
- Overfriendliness
- Idiopathic hypercalcemia: 15-50%
- Elastin arteriopathy: 75-80%
- MC is supravalvular AS
- PPS, MR, hypertension

Indian Pediatr 2014;51: 411-412

1p36 deletion syndrome

- Developmental delay
- Hypotonia
- Eye/ hearing abnormalities
- Skeletal, renal abnormalities
- Typical facial features

1p36 deletion syndrome

- Cardiovascular abnormalities in 43-71%
- ASD, VSD, Valvular abnormalities
- PDA, TOF
- Cardiomyopathy in 23%

Less common deletion/duplication syndromes

//	Disorder	Cardiac disease	Distinctive features
	3p25 deletion	ASD, Assorted CHD	Ptosis, abnormal ears, postaxial polydactyly
e John	3q duplication	Assorted CHD	Craniosynostosis, cleft palate, clinodactyly
	4p16 deletion Wolfe Hisrchhorn	OS ASD, PS, VSD	Greek helmet facies Cleft lip/palate
4	Deletion 5p15 (Cri du chat syndrome)	Assorted CHD	Cleft lip/palate Abnormal cat cry
	17p11.2 deletion Smith Magenis syndrome	Assorted CHD's	Self injurious behaviour Abnormal eyes, ears
	Tetrasomy 22p Cat eye sydrome	TAPVC, PAPVC, Assorted CHD's	Coloboma, anorectal anomalies, GU abnormalities
171			

Single gene disorders associated with CHDs

Syndrome	Cardiac Anomalies	Other Clinical Features	Causative Cene(s)
Noonan Syndrome	PS with dysplastic pulmonary valve, AVSD, HCM, CoA	Short stature, webbed neck, shield chest, developmental delay, cryptorchidism, abnormal facies	PTPN11, KRAS, RAF1, SOS1
Costello Syndrome	PS, HCM, cardiac conduction abnormalities	Short stature, developmental delay, coarse facies, nasolabial papillomata, increased risk of solid organ carcinoma	HRAS
LEOPARD Syndrome	PS and cardiac conduction abnormalities	Lentigines, hypertelorism, abnormal genitalia, growth retardation, sensorineural deafness	PTPN11, RAF1
Alagille Syndrome	PS, TOF, ASD, peripheral pulmonary stenosis	Bile duct paucity, cholestasis, typical facies, butterfly vertebrae, ocular anomalies, growth delay, hearing loss, horseshoe kidney	JAG1, NOTCH2
Marfan Syndrome	Aortic root dilatation and dissection, mitral valve prolapse	Tall stature, arachnodactyly, pectus abnormality, scoliosis, ectopia lentis, spontaneous pneumothorax, striae, dural ectasia	FBLN, TGFBR1, TGFBR2
Holt-Oram Syndrome	ASD, VSD, AVSD, progressive AV conduction system disease	Preaxial radial ray malformations (thumb abnormalities, radial dysplasia)	TBX5
Heterotaxy Syndrome	DILV, DORV, d-TGA, AVSD	intestinal malrotation	ZIC3, CFC1
Char Syndrome	PDA	Dysmorphic facies and digit anomalies	TFAP2b
CHARGE Syndrome	ASD, VSD, valve defects	Coloboma, choanal atresia, developmental delay, genital and/or urinary anomalies	CHD7, SEMA3E

(Curr Cardiol Rev. 2010; 6(2): 91-97)

Neuro-Cardio-Facial-Cutaneous syndromes

RAS-MAP Kinase Pathway Disorders:

- Noonan syndrome
- Costello syndrome
- Cardio-Facio-Cutaneous syndrome
- LEOPARD syndrome
- Legius syndrome
- Neurofibromatosis I

Features common to most Neuro-cardio-facialcutaneous(NCFC) syndromes are:

- variable degree of mental retardation or learning disabilities
- cardiac defects (particularly pulmonary valve stenosis and hypertrophic cardiomyopathy)
- facial dysmorphism with downslanting eyes
- short stature
- relative macrocephaly
- skin abnormalitie &
- an increased risk for malignancy

Reason for overlap: Genes involved act through a common pathway – the RAS MAPK pathway

Neuro-Cardio-Facial-Cutaneous Syndromes

Genetic counseling

- After genetic testing and confirmation of genetic etiology, genetic counseling is provided regarding:
 - Diagnosis, natural history, prognosis and management
 - Recurrence risk for subsequent offspring
 - Prenatal testing options for future pregnancies
- Denovo chromosomal abnormalities/ microdeletions have risk of recurrence of <1%
- Familial chromosomal rearrangements 5 30% risk of recurrence
- In single gene disorders, risk of recurrence will vary according to mode of inheritance: AD/ AR/ XL

Autosomal dominant disorders

- Only 1 copy of abnormal gene required to produce phenotype
- Passed from one generation to the next
- Both males and females equally affected
- May be transmitted to offspring of either sex
- Risk of recurrence in offspring is 50%

Autosomal recessive disorders

- Both copies of a gene should be mutated to produce disease phenotype
- Parents of an affected individual, though usually asymptomatic, are obligate carriers
- Horizontal pedigree pattern with 1 or more siblings affected
- Both males and females are equally affected
- Risk of recurrence in siblings is 25%

X-linked recessive disorders

- Mostly males affected; females usually normal carriers or only mildly affected
- For a carrier mother, risk of male offspring being affected is 50% and chance of female offspring being carrier is 50%.

	X _A	X _a
X _A	$X_A X_A$	$X_A X_a$
Y	X _A Y	X _a Y

Summing up....

- Detailed family history and thorough dysmorphology evaluation essential in every case with CHD
- Genetic test to be done depends on clinical diagnosis no single test for all types of genetic disorders
- Karyotyping informative only for chromosomal disorders
- Accurate genetic diagnosis essential for appropriate management, genetic counseling and prenatal diagnosis

